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Abstract. Boundary layers appear in various areas of fluid dynamics, as oceanology, meteorol-
ogy, or magnetohydrodynamics (MHD). Some of them are already mathematically well known,
like the Ekman layers. Many others remain unstudied, and can be much more complex. The aim
of this paper is to give both a unified presentation of the main boundary layers, and a simple
method to derive their size and equations. This method, based on elementary formal compu-
tations, is then applied to classical geophysical systems. We recover in this way many results
contained in the physical literature.
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1. Introduction

One of the main features in oceanography and meteorology, and also in magneto-
hydro-dynamics is the presence of one or more small parameters. Typically in
oceanography, after appropriate time and space rescaling, the rotation speed of
the Earth (which creates the Coriolis force) is pretty large (102 to 104), the aspect
ratio (ratio between the depth and the length) is small (like a few kilometers over
several thousands kilometers), parameters describing the stratification (like the so
called Brunt Vassaila frequency) are large. In MHD, in the study of the Earth
magnetic field, the rotation speed is even larger (after rescaling, something like
108), the strength of the magnetic field is very important (108 also).

In the interior of the domain these small parameters lead to some reduced
behavior. For instance, in highly rotating fluids, the velocity field is invariant in
the direction of the rotation axis: this result is known as the Taylor–Proudman
theorem (see textbook [12]). This reduced behavior is often incompatible with
boundary conditions. This leads to boundary layers, small zones near the boundary
where the fluid velocity changes rapidly, in order to satisfy the boundary conditions
(typically the no-slip condition at a rigid surface).
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In some cases, the derivation of the layers is easy, as in the study of viscous
perturbations of hyperbolic systems (see [11, 15]). But in most problems, the situa-
tion is more complex, involving a variety of length scales and equations. A typical
example is the evolution of an incompressible viscous fluid in a highly rotating
domain. Governing equations are Navier–Stokes equations, with a large Coriolis
term

∂tu + u · ∇u +
e × u

ε
+

∇p

ε
− E

ε
∆u = 0, (1.1)

∇ · u = 0. (1.2)

where e = (0, 0, 1)t is a given fixed vector, and E and ε are two small parameters,
called Ekman and Rossby numbers. A traditional scaling is E proportional to ε2,
relevant to the Earth’s liquid core (see [7] for details). For this system, only the
case of a flat horizontal boundary has been fully studied, with the development of
the Ekman layer with size E1/2. We refer to monograph [20] or articles [14, 19, 3]
for rigorous justification. In more complex geometries, following the fundamental
papers of Stewartson [24, 25], many other layers appear: for instance, between two
concentric spheres, boundary layers of size E1/2, E1/3, E1/4, E2/5, . . . are expected
near the inner sphere and the cylinder circumscribing it (see figure 1).

Classically, the derivation of such boundary layers is done through huge com-
putations, with many technicalities. Broadly speaking, two approaches emerge
from the literature:
– The first one is analytical: one computes the exact solution, and then performs

an asymptotic analysis on it. However, such technique is restrictive (the exact
solution is rarely computable), and often tedious (cf. [24] with Bessel functions).

– The second one relies on the so-called “matching asymptotic expansions meth-
od”: for a general presentation, we refer the reader to [27, 8]. See also [16, 23,
28]. This method has been applied with success to various physical situations,
with for instance the treatment of the famous Prandtl layer. It allows a precise
study of many singular perturbation problems, in a very general framework
(including nonlinear partial differential equations). However, it often leads to
heavy computations (see for instance [26] on the rotating fluids system). It is
often supplied with refined physical arguments, so as to reduce the number of
unknowns.

The aim of this paper is to give a simpler approach of boundary layer problems.
We propose a formal method, based on elementary algebraic computations, to de-
rive their size and in some cases their equations. Applied to classical systems of
geophysics, this method allows to recover in a simple way many results exposed in
the literature. Up to the best of our knowledge, this simple presentation of bound-
ary layer equations has never been detailed in such a framework. We hope this
work will help mathematicians to get interested in the numerous existence, unicity
and stability related problems. This paper was announced in the proceedings note
[10], written with Emmanuel Grenier, in which the ideas were given without any
detail.
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Fig. 1. Boundary layers of rotating fluids, near a sphere and at the circumscribing cylinder
(following Stewartson [25]).

The rest of this paper is structured as follows: section 2 is devoted to the general
presentation of the method. Sections 3 to 6 detail some of its application to flat
boundary layers. Finally, section 7 extends this formal derivation to spherical
layers. Note that most of the formal results in the flat case can be rigorously
justified (see on different geophysical systems articles [4, 14, 5, 6, 9]), however the
spherical case remains widely open.

2. Presentation

This part presents the method in the general case, emphasizing the main ideas
underlying it. In what follows, we start with systems of the form

AεUε + Qε(Uε) = F ε, (2.1)
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where F ε is some smooth forcing term, Aε is a matricial linear differential operator
and Qε is the nonlinear part of the equation. Note that equations (1.1), (1.2) can
be written this way, with for instance

Uε = ( uεpε ) , Qε(Uε) = (uε · ∇uε0 ) .

Let us suppose that equation (2.1) holds in a domain

t ∈ R∗
+, x ∈ Ω, Ω =

{
x = (x‖, x⊥), x⊥ > 0

}

(one flat boundary). As usual in boundary layer problems, we expect solutions Uε

of (2.3) to have an asymptotic expansion

Uε(t, x) =
+∞∑
j=0

(
εβ

)j
U j

(
t, x,

x⊥
εα1

, . . . ,
x⊥
εαn

)
(2.2)

where εα1 ,. . . , εαn are the possible sizes of the layer at ∂Ω, εβ is the characteristic
size of the Uε - components, and where the profiles U j have the decomposition

U j(t, x, θ1, . . . , θn) = U j
int(t, x) +

n∑
k=1

U j
k

(
t, x‖, θk

)

with an interior term U j
int describing the solution far from the boundary, and a

boundary layer part
∑

U j
k . The main questions relative to boundary layers are

then:
– What are the possible α1, . . . , αn, β ?
– What are the equations satisfied by the U j

k , or at least by U0
k ?

The first idea is that boundary layers already appear on linear equations, therefore
in a first step we can dismiss the term Qε. This is a very classical approach,
underlying most of the physical studies. This is often1 a posteriori justified, since
in many cases the nonlinear term appears to be a higher order perturbation of the
linear case. However this nonlinear term is important when we look at stability
issues. It is this term which destabilizes many flows. In a crude way we can say
that the nonlinear term does not create the boundary layer, but may destabilize
it. Therefore, we look at equation

AεUε = F ε. (2.3)

In most cases, the external force acts in the interior of the domain, and is not
located in the boundary layers. In those cases, the boundary layer part of (2.2)
formally satisfies the homogeneous equation associated with (2.3) (of course, if F ε

is supported in small areas near the boundaries, F ε can create itself boundary
layers, whose sizes do not appear in the force free case. Then, the sizes of these

1 Some boundary layers are genuinely nonlinear, and do not allow linearization (like the fa-
mous Prandtl layer [17, 13]). But to our knowledge, such layers are quite singular: generically,
boundary layers are already “within the linear systems”.
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layers are simply given by the sizes of the support of F ε). Thus, in order to derive
the boundary layers, it is natural to consider equation

AεUε = 0. (2.4)

The main point is the following: for the systems we know, the study of (2.4) is
sufficient to get the main features of the layers. To go back to (2.1) then needs a
careful analysis and justification, but on clearly identified layers and with clearly
given sizes of the various components of Uε, which greatly helps. To study (2.4),
we make a Laplace-Fourier analysis, considering solutions of (2.4) of the form

Uε = eiτεt+iξεxV ε. (2.5)

The use of such modal solutions is not new, as it appears in stability issues or
in the study of hyperbolic systems (see for instance [21] for application to linear
geometric optics). In our context, it will lead us to the desired sizes and equations.

Size of the layers

Let Aε the symbol of Aε and aε = det Aε. We introduce the characteristic manifold
of Aε,

σε =
{

(τε, ξε) | aε(τε, ξε) = 0
}

.

All the nontrivial modal solutions of (2.4) satisfy (τε, ξε) ∈ σε.
Broadly speaking, boundary layers will correspond to (τε, ξε) ∈ σε with

Im (ξε
⊥) −−−→

ε→0
+∞.

Their sizes will then be given by |Im (ξε
⊥)|−1. To be more precise, we introduce

the following definition

Definition 2.1. Let α > 0. We shall say that εα is a boundary layer size if there
exists (τε, ξε) ∈ σε, with

– (τε, ξε
‖) independent of ε

– ξε
⊥ ∼ C

εα , with Im (C) > 0, as ε goes to zero.

Remark. The last condition on the asymptotic behavior of ξε
⊥ is not restrictive.

Indeed, if (τε, ξε
‖) is independent of ε, pε = aε(τε, ξε

‖, · ) will be in all interesting
cases a polynomial, with coefficients meromorphic in ε. Classical complex analysis
(cf. [1]) shows then that for small enough ε > 0, the roots of this polynomial are
representable by smooth functions ξ1

⊥(ε), . . . , ξs
⊥(ε) with

ξi
⊥(ε) ∼ Ci

εαi
, αi ∈ Q, Ci ∈ C, ε → 0.

Thus, the derivation of the sizes of the layers reduces to the search of asymptotic
behaviors of solutions of aε = 0.
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Remark. Instead of looking at characteristic length scales (boundary layers), we
can consider in the same way characteristic time scales (time layers and oscilla-
tions), by swapping the roles of τε and ξε

⊥. Thus, we may study (τε, ξε
⊥) ∈ σε

with
– ξε independent of ε, Im (τε) → ∞: initial (time) boundary layer
– ξε independent of ε, Re (τε) → ∞: high frequency oscillations in the domain,

with frequency of order Re (τε).
We may also look for mixed behaviors, for instance Im (τε) → ∞ and Re (τε) →
∞, which corresponds to an oscillatory boundary layer.

Equations of the layers

Once we have the size of the layers, the next step is to find their equations. Let εα

a boundary layer size. Let (τε, ξε) ∈ σε satisfying the two conditions of definition
1. Let π(τε, ξε) the spectral projection of Aε(τε, ξε) on its kernel. It is clear that
Uε is a modal solution of (2.4) iff

π(τε, ξε)V ε = V ε.

Suppose that the range of π(τε, ξε) is one-dimensional (for small enough ε > 0 ).
Then it is easy to show that up to a multiplication by an arbitrary function of ε,
Uε is uniquely defined and has the asymptotic behaviour

Uε(t, x) ∼

⎛
⎜⎝

εβ1

. . .
εβn

⎞
⎟⎠ Ũ0

(
t, x‖,

x⊥
εα

)
, ε → 0

where β1, . . . , βn ∈ Q so that we get the size εβi of each component of this boundary
layer solution.

To get the equations of the layer, we rescale the symbol by:

Ãε(τ, ξ) = Aε

(
τ, ξ‖,

ξ⊥
εα

)⎛
⎜⎝

εβ1

. . .
εβn

⎞
⎟⎠ .

In all our systems, Ãε will have a finite Laurent development in a certain power of ε.
The leading coefficient of this development will be a symbol in (τ, ξ), which will
give the equations of the layer. We refer to next sections for extensive application.
At this point, the approach is completely elementary. Its interest lies in the fact
that it provides a very quick and easy way to derive a large number of classical
and not so classical boundary layers.

In the following of the paper, we apply our method to classical geophysical
systems, and recover in a simple way many results exposed in the literature.
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3. Rotating fluids

We consider in this section equations (1.1), (1.2) of a rotating fluid, with the
physical scaling E = ε2. After we drop the u ·∇u term, this system can be written

AεUε = 0, Uε =
(

uε

pε

)
. (3.1)

where Aε is the differential operator with matricial symbol (ξ2 = ξ2
1 + ξ2

2 + ξ2
3):

Aε(τ, ξ) =

⎛
⎜⎜⎝

iτ + εξ2 −ε−1 0 ε−1ξ1

ε−1 iτ + εξ2 0 ε−1ξ2

0 0 iτ + εξ2 ε−1ξ3

ε−1ξ1 ε−1ξ2 ε−1ξ3 0

⎞
⎟⎟⎠

The determinant, obtained by expansion along the last row, is

aε(τ, ξ) = (iτ + εξ2)2ξ2 +
ξ2
3

ε2
. (3.2)

Remark. Equation aε = 0 is the ”algebraic translation” of the fundamental equa-
tion on pressure:

(∂t − ε∆)2∆p + ε−2 ∂2p

∂z2
= 0

derived by Greenspan in [12].

As explained in section 2, we derive the different boundary layers by looking
at elements (τε, ξε) ∈ σε satisfying different asymptotics as ε goes to zero. Note

that every solution V =
(

u
p

)
of Aε(τ, ξ)V = 0 satisfies relations

u1 =
−ε−1ξ1γ + ε−2ξ2

γ2 + ε−2
p, u2 =

−ε−1ξ2γ + ε−2ξ1

γ2 + ε−2
p, γu3 = −ε−1ξ3p. (3.3)

3.1. Ekman layers

We first derive the possible horizontal boundary layers. They correspond to ele-
ments (τε, ξε) ∈ σε with (τε, ξε

1, ξ
ε
2) = (τ, ξ1, ξ2) independent of ε, and

Im (ξε
3) −−−→

ε→0
∞.

We deduce from equation (3.2) as ε goes to zero

ε2(ξε
3)

6 ∼ − (ξε
3)

2

ε2
(3.4)

⇐⇒ ξε
3 ∼ ±1 ± i√

2ε
(3.5)
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which gives one boundary layer size ε = E1/2. This is the so-called Ekman layer.
Let (τε, ξε) as above, ξε

3 satisfying (3.5). Let V ε in ker(Aε(τε, ξε)). Using (3.3),
V ε satisfies (modulo a multiplication by an arbitrary function of ε):

u1 ∼ C1, u2 ∼ C2, u3 ∼ C3 ε, p ∼ C4 ε2, ε → 0.

where the Ci’s denote various constants. Back to the corresponding modal solution
Uε, we have:

Uε =

⎛
⎜⎜⎝

1
1

ε
ε2

⎞
⎟⎟⎠

(
Ũ0(·, ε−1z) + εŨ1(·, ε−1z) + . . .

)
.

Equation on U0 =
(

u0

p0

)
is obtained by rescaling the matricial symbol: if we set

Ãε(τ, ξ1, ξ2, ξ3) = Ãε(τ, ξ1, ξ2, ε
−1ξ3)

⎛
⎜⎜⎝

1
1

ε
ε2

⎞
⎟⎟⎠ , (3.6)

we have Ãε = Ã0 + εÃ1 + . . . , with leading symbol:

Ã0 =

⎛
⎜⎜⎝

ξ2
3 −1 0 0
1 ξ2

3 0 0
0 0 0 0
ξ1 ξ2 ξ3 0

⎞
⎟⎟⎠ ,

which corresponds to equations

ũ0
2 + ∂2

Z ũ0
1 = 0, (3.7)

ũ0
1 − ∂2

Z ũ0
2 = 0, (3.8)

∂xũ0
1 + ∂yũ0

2 + ∂Z ũ0
3 = 0. (3.9)

All these results match the derivation obtained in [20] through an asymptotic
expansion. Already in this simple case, the computations are much faster than
the usual Ansatz study.

Remark. We may compute the size of the components of the nonlinear term. We
find

u · ∇u1 = O(1), u · ∇u2 = O(1), u · ∇u3 = O(ε).

It is small compared to the other terms involved in the equation of the layer (since
−ε∆u = O(ε−1)), which justifies a posteriori that we neglect the nonlinear terms
in the derivation of the equation of the boundary layer.
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3.2. Vertical layers

We look for elements (τε, ξε) ∈ σε with τ, ξ2, ξ3 independent of ε, and

Im (ξε
1) −−−→

ε→0
∞.

Looking at equation aε = 0, there are two cases to consider
– ξ3 	= 0.

In this case, we get

ε2ξ6
1 ∼ −ξ2

3

ε2
,

which shows that ε2/3 = E1/3 is a boundary layer size. We can proceed as in the
case of the Ekman layer. We get

u1 ∼ C1 ε2/3, u2 ∼ C2, u3 ∼ C3, p ∼ C4 ε2/3, ε → 0,

so that the corresponding modal solution has the expansion

Uε =

⎛
⎜⎜⎝

ε2/3

1
1

ε2/3

⎞
⎟⎟⎠

(
Ũ0(·, ε−2/3z) + ε2/3Ũ1(. . . , ε−2/3z) + . . .

)
.

After rescaling of the matricial symbol Aε as in (3.6) we get

ũ0
2 − ∂X p̃0 = 0,

ũ0
1 + ∂yp̃0 − ∂2

xũ0
2 = 0,

∂z p̃
0 + ∂2

X ũ0
3 = 0,

∂X ũ0
1 + ∂yũ0

2 + ∂zũ
0
3 = 0.

It leads to a single equation on pressure

∂2p̃0

∂Z2
+

∂6p̃0

∂X6
= 0. (3.10)

Remark. Computing again the size of the components of the nonlinear term, we
find

u · ∇u1 = O(ε2/3), u · ∇u2 = O(1), u · ∇u3 = O(1)

which is still small compared to the other terms involved in the equation.

– ξ3 = 0.

In this case, we get ξε
1 ∼ ±

√
τ

ε
. This layer has size ε1/2 = E1/4. We thus recover

the two scales announced in [24]. For this last layer, we get

u1 ∼ C1 ε1/2, u2 ∼ C2, p ∼ C3 ε1/2.
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Note that the size of u3 is free, which is natural since we look at modal solutions
independent of z (ξ3 = 0). Leading equations of the layer are then

ũ0
2 = ∂X p̃ (3.11)

ũ0
1 = −∂yp̃ (3.12)

∂X ũ0
1 + ∂yũ0

2 = 0. (3.13)

3.3. Time scales

As mentioned in section 2, we can through our method investigate time scales of
the problem instead of length scales. We consider ξε = ξ real (Fourier mode) and
independent of ε. We look for solutions of aε = 0 with τε going to infinity: we get
the asymptotic behaviour

τ ∼ ± i

ε

|ξ3|
|ξ|

which corresponds to high frequency oscillations of frequency ε−1. These are the
Rossby waves, described from a physical viewpoint in [20], and from a mathemat-
ical viewpoint in [2, 19, 3].

4. Hartmann layers

4.1. Governing equations

We consider an incompressible fluid under the action of a vertical magnetic field
of high intensity. Neglecting the current displacements and under the assumption
of a small magnetic Reynolds number, the dimensionless equations are:

∂tu + u · ∇u +
∇p

ε
− ∆u +

e × j

ε
= 0, (4.1)

j = ∇ϕ + u × e, (4.2)
∇ · u = 0, (4.3)
∇ · j = 0 (4.4)

(see [18] for details). e = (0, 0, 1), u is the velocity field, p the pressure, j the
current density, ϕ the electromagnetic potential. We have set ε = M−2, where
M is the Hartmann number, proportional to the average magnetic field, so that
ε 
 1. As previously, in a first step we neglect the nonlinear term, and consider
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the simplified linear system:

∂tu +
∇p

ε
− ∆u +

e × j

ε
= 0,

j = ∇ϕ + u × e,

∇ · u = 0,

∇ · j = 0.

This system can be written

AεUε = 0, Uε = ( uεjεpεϕε ) .

The symbol Aε is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iτ + ξ2 0 0 0 −ε−1 0 iξ1 0
0 iτ + ξ2 0 ε−1 0 0 iξ2 0
0 0 iτ + ξ2 0 0 0 iξ3 0
0 −1 0 1 0 0 0 −iξ1

1 0 0 0 1 0 0 −iξ2

0 0 0 0 0 1 0 −iξ3

ε−1iξ1 ε−1iξ2 ε−1iξ3 0 0 0 0 0
0 0 0 ε−1iξ1 ε−1iξ2 ε−1iξ3 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We will look for solutions

V =
( u

j
p
ϕ

)
	= 0, of AεV = 0. (4.5)

Direct computation of the determinant is possible, however it is easier to express j
as a function of u, which reduces the problem to a 4 by 4 matrix. More precisely,
incompressibility condition on j is written

ξ1j1 + ξ2j2 + ξ3j3 = 0.

Using expressions of j given by lines 4, 5, 6 of system AεV = 0, we get:

−ξ2ϕ = −iξ1u2 + iξ2u1.

For the boundary layer solutions, ξ2 	= 0, so that we can divide last equation by
ξ2. We inject this expression of ϕ in lines 4,5,6 of system AεV = 0 and find

j1 =
ξ2
2 + ξ2

3

ξ2
u2 +

ξ1ξ2

ξ2
u1, (4.6)

j2 = −ξ2
1 + ξ2

3

ξ2
u1 − ξ1ξ2

ξ2
u2, (4.7)

j3 =
ξ3

ξ2
(ξ2u1 − ξ1u2). (4.8)

Then, we plug these expressions of j1, j2, j3 in lines 1, 2, 3 of system AεV = 0.
Using the incompressibility condition on u ξ1u1 + ξ2u2 + ξ3u3 = 0, we finally get
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a reduced system on u and p:
⎛
⎜⎜⎝

α 0 iβξ1 ε−1iξ1

0 α iβξ2 ε−1iξ2

0 0 α + iβξ3 ε−1iξ3

ε−1ξ1 ε−1ξ2 ε−1iξ3 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u1

u2

u3

p

⎞
⎟⎟⎠ = 0,

where

α = iτ + ξ2 +
ξ2
3

εξ2
, β = i

ξ3

εξ2
.

If we set:

p′ := p + βu3,

this system reduces to
⎛
⎜⎜⎝

α 0 0 ε−1ξ1

0 α 0 ε−1ξ2

0 0 α ε−1ξ3

ε−1ξ1 ε−1ξ2 ε−1ξ3 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u1

u2

u3

p′

⎞
⎟⎟⎠ = 0. (4.9)

Note that this system has non trivial solutions
( u

p

)
iff system (4.5) has non zero

solutions V . Thus, computing the determinant of the last system, we have that
equation aε = 0 is equivalent to equation:

iτ + ξ2 +
ξ2
3

εξ2
= 0. (4.10)

4.2. Horizontal and vertical layers

Let (τ, ξ1, ξ2) fixed. Solutions ξε
3 with imaginary part going to infinity (i.e. hori-

zontal layers) satisfy

ξ3 ∼ ±i
√

ε, ε → 0,

i.e. the boundary layer size is ε1/2. It is the Hartmann layer, physically described
in [22].

In the case Imξε
1 → ∞ (vertical layers), we have

(ξε
1)

4 ∼ −ε−1ξ2
3 ,

which leads to boundary layer size ε1/4. Note that in this case, the kernel of
Aε(τ, ξε) has dimension ≥ 2, so that there are different possible sizes (and equa-
tions) for our modal solutions.
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4.3. Time layers

As in the case of rotating fluids, we look at (τε, ξε) ∈ σε with ξε independent of

ε and τε going to infinity. We obtain from (4.10): iτ ∼ ξ2
3

ξ2ε
. Contrary to the

previous system, there is no oscillation, but an initial time layer of size ε. For
more physical insight, we refer to [22, 18].

5. MHD

5.1. Governing equations

We consider in this section an incompressible viscous fluid, at both high rotation
and strong magnetic field, mixing the main features of the two previous sections.
It is of great geophysical interest, as it is a first step in the understanding of the
magnetohydrodynamic flow in the Earth’s core. At very small magnetic Reynolds
number, and under the “geological” scalings (see [5]), governing equations in a
dimensionless form are:

∂tu + u · ∇u +
∇p

ε
− ∆u + +

e × u

ε
+

Λe × j

ε
= 0, (5.1)

j = ∇ϕ + u × e, (5.2)
∇ · u = 0, (5.3)
∇ · j = 0, (5.4)

where e = (0, 0, 1) and Λ is a constant. We will not take into account the nonlin-
earity and consider system

∂tu +
∇p

ε
− ∆u + +

e × u

ε
+

Λe × j

ε
= 0,

j = ∇ϕ + u × e,

∇ · u = 0,

∇ · j = 0.

5.2. Symbol

Last system can be written

AεU = 0, U =
( u

j
p
ϕ

)
.
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The symbol Aε is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iτ + ξ2 −ε−1 0 0 −ε−1 0 iε−1ξ1 0
ε−1 iτ + ξ2 0 ε−1 0 0 iε−1ξ2 0
0 0 iτ + ξ2 0 0 0 iε−1ξ3 0
0 −1 0 1 0 0 0 −iξ1

1 0 0 0 1 0 0 −iξ2

0 0 0 0 0 1 0 −iξ3

ε−1iξ1 ε−1iξ2 ε−1iξ3 0 0 0 0 0
0 0 0 ε−1iξ1 ε−1iξ2 ε−1iξ3 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Computations are then similar to those of the previous section: we come to a
reduced system: ⎛

⎜⎜⎝
α −ε−1 0 ε−1ξ1

ε−1 α 0 ε−1ξ2

0 0 α ε−1ξ3

ξ1 ξ2 ξ3 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u1

u2

u3

p

⎞
⎟⎟⎠ = 0

where

α = iτ + εξ2 +
Λξ2

3

εξ2
.

Equation aε = 0 is then equivalent to equation:

(
iτ + εξ2 +

Λξ2
3

εξ2

)2

ξ2 +
ξ2
3

ε2
= 0. (5.5)

We also deduce from the reduced system that non-trivial elements of ker(Aε)
satisfy

u1 =
−ε−1ξ1α + ε−2ξ2

α2 + ε−2
p, u2 =

−ε−1ξ2α + ε−2ξ1

α2 + ε−2
p, αu3 = −ε−1ξ3p. (5.6)

5.3. Horizontal layers

We do not detail computations, as they are similar to those of the previous sections.
We get the unique boundary layer size ε. Up to a multiplicative function of ε, we
have

u1 ∼ C1, u2 ∼ C2, u3 ∼ C3ε, p ∼ C4ε
2,

j1 ∼ C5, j2 ∼ C6, j3 ∼ C7ε, ϕ ∼ C8ε
2,
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and equations are:

ũ0
2 − Λũ0

1 + ∂2
Z ũ0

1 = 0,

ũ0
1 − Λũ0

2 + ∂2
Z ũ0

2 = 0,

j̃1
0 − ũ2

0 = 0,

j̃2
0 + ũ1

0 = 0,

∂xũ0
1 + ∂yũ0

2 + ∂Z ũ0
3 = 0,

∂xj̃0
1 + ∂y j̃0

2 + ∂Z j̃0
3 = 0.

5.4. Vertical layers

The computations are similar to the pure rotating case. There are two possible
sizes of boundary layers, ε2/3 and ε1/2, with the same kind of equations.

6. Munk and Stommel layers

We consider in this section an homogeneous model of wind-driven ocean circula-
tion. Because of the Taylor–Proudman theorem, the evolution of the flow is mostly
two-dimensional. As explained in monograph [20] (or rigorously derived in arti-
cle [6]), a simple but pertinent system to describe the evolution of the horizontal
velocity u(x, y) = (u1(x, y), u2(x, y)) is

∂tω + u · ∇ω +
r

2
ω + βu2 − ν∆ω − βcurl ψ = 0,

ω = ∂xu2 − ∂yu1, ∇ · u = 0.

(r/2)ω corresponds to what physicists call “the Ekman pumping”: it is a dissipa-
tive term due to the Ekman layer which develops at the bottom of the ocean.The
βu2 term comes from the variation of the Coriolis force with respect to the atti-
tude, and βcurl ψ is a forcing term created by the wind. To remain in the scope
of the method, we consider as before the linear part of the equation,

∂tω +
r

2
ω + βu2 − ν∆ω = βcurl(ψ), (6.1)

∇ · u = 0. (6.2)

System (6.1), (6.2) can be written

AU = F, u =
(

u1

u2

)
, F =

(
curl (ψ)

0

)
,

where A has symbol

β−1

(
τξ2 − iνξ2ξ2 − ir/2ξ2 −τξ1 + β + iνξ2ξ1 + ir/2ξ1

ξ1 ξ2

)
.

We will look for boundary layers in the x-direction under different scalings.
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6.1. Munk layer

We consider the scaling: ν, r and β � 1. If we set ε = β−1, the symbol A = Aε

is linear with coefficients holomorphic in ε. Equation aε = 0 is

τξ2 − iνξ4 − i
r

2
ξ2 − ξ1

ε
= 0. (6.3)

If τε and ξε
2 are fixed independent of ε, solutions ξε

1 whose imaginary part goes to
infinity satisfy

ν(ξε
1)

4 ∼ iε−1ξ1,

which leads to the boundary layer size ε1/3. This layer is known as the Munk layer
(see [20]). Physically, it is responsible for the western intensification of boundary
currents (Gulf stream, Kuroshio current, Agulhas current, . . . see [20] for details).

If ξ2 	= 0, solutions V of AεV satisfy

u1 ∼ C ε1/3u2, ε → 0.

Equations of this layer are then

ũ0
2 − ν∂3

X ũ0
2 = 0, (6.4)

∂X ũ0
1 + ∂yũ0

2 = 0. (6.5)

Remarks. 1. One may check easily that the size of the nonlinearity u · ∇ω is
small compared to the other terms of the equation.

2. If we introduce the stream function p associated to (ũ0
1, ũ

0
2), (6.4), (6.5) are

equivalent to equation −∂4
Xp+∂Xp = 0. If we add appropriate physical conditions,

this allows to determine the boundary layer profile at the western coast (resp.
eastern coast) which corresponds in our simplified model to the domain X > 0
(resp. X < 0). It is then a straightforward computation to see that the normal
velocity u2 at the western coast is O(ε−1/3) (whereas u2 = O(1) at the eastern
coast). This shows the western intensification of boundary currents. We refer to
[6] for complete treatment.

If ξ2 = 0, we get ũ0
1 = 0, ∂yũ0

2 = 0 and equation

ũ0
2 − ν∂3

X ũ0
2 = 0.

It corresponds to a boundary layer term independent of y.

6.2. Stommel layer

This time, we make another choice of parameters: we introduce

ε =
( ν

β

)1/3

, εs =
r

2β
.



Vol. XX (2004) Formal Derivation of Boundary Layers in Fluid Mechanics 17

We suppose ν constant, but r � 1 such that εε−1
s → 0. Physically, this scaling

expresses that we do not neglect the Ekman pumping anymore.
A priori, this system can not be treated as the previous ones, since there are

two parameters, namely ε and εs. In order to overcome this difficulty, we link
these parameters artificially: we assume that ε = f(εs), with

lim
εs→0

εε−1
s = 0.

With this assumption, symbol A depends on the parameter εs only. This shows
that our method can be applied to problems including several parameters. The
equation aεs = 0 is equivalent to

τξ2 − iνξ4 − iνεsε
−3ξ2 − νε−3ξ1 = 0.

For the sake of brevity, we do not detail computations here. There are two possible
layers:
– a boundary layer with size εs, known as “Stommel Layer” (see [6]). If ξ2 	= 0,

any corresponding boundary layer term satisfies

u1 ∼ C1εs, u2 ∼ C2, ε → 0,

and equations

ũ0
2 + ν∂X ũ0

2 = 0,

∂X ũ0
1 + ∂yũ0

2 = 0.

– a boundary layer with size ε
−1/2
s ε3/2, known as “Friction layer”. As above, if

ξ2 	= 0, equations are

−∂3
X ũ0

2 + ũ0
2 = 0,

∂X ũ0
1 + ∂yũ0

2 = 0.

There again the terms we have neglected in the equations are negligible. All
these results are in agreement with [20, 6].

7. Spherical cases

The case of spherical layers is central with regards to its applications in geophysics.
In order to derive its main features, we may adapt considerations of section 2. Let
us consider the case of a boundary layer at latitude θ. The natural directions of
the problem are those tangent and perpendicular to the sphere, so that we make
the change of variables

x′ = Rθx, v′ = Rθv,

where Rθ is the rotation of angle θ in the (x, z) plane, v being any 3-D vectorial
quantity in the equations (fluid velocity, current density, . . . ). This leads to a new
linear system

Aε,θU ′ = 0. (7.1)
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The main difference with the flat case is the geometrical constraint on the length
scales brought by sphericity: if δ (resp. h) is the typical length scale of the layer
perpendicularly (resp. tangently) to the sphere, we have h = O(

√
δ). Following

this, we look for solutions U ′ = eiτεteiξεx′
vε of (7.1) with τ, ξ2 independent of ε,

and

Imξε
1 → +∞, Imξε

3 → +∞, |Imξε
3| ∼ C|Imξε

1|1/2. (7.2)

Note that ξε
1 corresponds to δ, and goes faster to infinity than ξε

3.

7.1. Rotating fluids

After rotation of angle θ, we get the system

Aε,θU ′ = 0, U ′ =
(

u′

p′

)
,

Aε,θ(τ, ξ) =

⎛
⎜⎜⎝

iτ + εξ2 −ε−1 cos(θ) 0 ε−1ξ1

ε−1 cos(θ) iτ + εξ2 ε−1 sin(θ) ε−1ξ2

0 ε−1 sin(θ) iτ + εξ2 ε−1ξ3

ε−1ξ1 ε−1ξ2 ε−1ξ3 0

⎞
⎟⎟⎠ .

Equation aε,θ = 0 is

ε2ξ2(iτ + εξ2)2 + sin2(θ)ξ2
1 + cos2(θ)ξ2

3 − 2 cos(θ) sin(θ)ξ1ξ3 = 0. (7.3)

We must distinguish two cases.

7.1.1. Far from the equator

We suppose θ constant different from zero. The leading terms in the left part of
(7.3) are ε2ξ2(εξ2)2 and sin2(θ)ξ2

1 , and we get:

ε4ξ6
1 = − sin2(θ)ξ2

1 , (7.4)

which gives the boundary layer size ε1/2(sin θ)−1/2. The features are essentially
those of the Ekman layer, with elements

(
u′
p′

)
of ker(Aθ,ε) satisfying up to a

multiplicative factor:

u′
1 ∼ C1ε, u′

2 ∼ C2, u
′
3 ∼ C3, p′ ∼ C4ε

2, ε → 0.

The equations are (dropping the primes):

∂2
X ũ0

2 − sin(θ)ũ0
1 = 0,

∂2
X ũ0

1 + sin(θ)ũ0
2 = 0.
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7.1.2. Near the equator

When θ goes to zero, the previous size becomes incorrect as sin(θ) goes to zero.
This phenomenon is called “geostrophic degeneracy”. We want to know the value
of θ below which it is not valid anymore, and then to find the boundary layer size
at the equator.

To answer the first question, we consider equation (7.3) for θ = εγ . We want
to determine the critical γc beyond which the boundary layer size changes. For
γ < γc, (7.4) gives

ξ1(ε) ∼ Cε(γ−1)/2, ε → 0,

and the terms in the left part of (7.3) are of respective sizes

ε2ξ2(iτ + εξ2)2 = O
(
ε3γ−2

)
, sin2(θ) ξ2

1 = O
(
ε3γ−2

)
, (7.5)

cos2(θ) ξ2
3 = O

(
εγ/2−1

)
, 2 cos(θ) sin(θ) ξ1 ξ3 = O

(
ε7γ/4−3/2

)
. (7.6)

At γ = γc, the leading terms of (7.3) must change, to provide a new boundary
layer size. A change can happen iff:

3γ − 2 = γ/2 − 1 or 3γ − 2 = 7γ/4 − 3/2.

Both cases lead to γc = 2/5.
At the equator (θ = 0) equation (7.3) is:

ε2ξ2(iτ + εξ2)2 + ξ2
3 = 0.

and we get the boundary layer size at the equator: ε4/5.

Remark. The values we have found about equator degeneracy match the results
of Stewartson in article [25].

Corresponding elements of ker(Aθ,ε) (θ = 0) satisfy in that case

u′
1 ∼ C1ε

2/5, u′
2 ∼ C2, u

′
3 ∼ C3, p′ ∼ C4ε

4/5, ε → 0.

We find equations (dropping the primes)

ũ0
2 − ∂X p̃0 = 0,

ũ0
1 + ∂2

X ũ0
2 = 0,

∂z p̃
0 + ∂2

X ũ0
3 = 0,

∂X ũ0
1 + ∂zũ

0
3 = 0,

which give the equation on pressure
∂2p̃0

∂z2
+

∂6p̃0

∂X6
= 0.

Remark. The non-linear term has size

u · ∇u = (ε1/5, ε−1/5, ε−1/5)

and is small compared to the terms involved in the equations of the layer.
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Fig. 2. Derivation of the E4/7 boundary layer size.

7.1.3. Other layers

In [25], Stewartson considers the problem of two concentric spheres rotating at
slightly different speeds. After huge calculations, he enumerates five types of
layers: ε and ε4/5 spherical layer, ε2/3 and ε1/2 cylindrical layers, plus a layer of
size ε4/7 located on the cylinder circumscribing the inner sphere. This last layer
comes from the pumping due to the Ekman layers: see [20] or [12] for physical
description of this phenomenon. To model the evolution of the fluid, appropriate
equations are (far from the Ekman layers)

∂tu − ε∆u + βu + ∇p = 0, (7.7)
∇ · u = 0, (7.8)

as they take into account both the Taylor–Proudman theorem (u is the horizontal
velocity, the equation is 2-D) and the pumping of the (spherical) Ekman-type layer
(through the βu term). Here, β ∼ C sin(α)−1/2. As ε → 0, we get the relation

εξ2
1 ∼ C sin(α)−1/2.

But geometrical constraints give sin(α)−1 ∼ ξ
1/2
1 . We get ξ1 ∼ Cε−4/7, which is

the size expected (see figure).

7.2. Hartmann case

We can lead the same analysis with system of section 4. We do not give any detail
of the computations, analogous to the preceding ones.
– For θ constant 	= 0, we find a unique boundary layer size ε1/2.
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– As θ goes to zero, this size is not valid anymore. If we set θ = εγ , we find that
the “critical” γ is γc = ε1/6. At the equator, the boundary layer size is ε1/3.

Acknowledgements. I wish to thank Emmanuel Grenier for his many sugges-
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