
CES - Mathématiques Projet SingFlows AAPG ANR 2018

Full proposal for project SingFlows
Singular Flows: boundary layers, vortex filaments, wave-structure interaction.
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Project Summary:

The objective of SingFlows is to develop mathematical and numerical tools for the analysis of three
problems in fluid dynamics: the behaviour of anisotropic flows (boundary layers, shallow water flows),
the dynamics of vortical structures, and the evolution of fixed or floating structures in water waves.
Our will to unify these different problems is natural, because they share many mathematical features.
The underlying keypoint is that they are described by singular solutions of Euler or Navier-Stokes
equations. The word singular refers here:
- either to a lack of smoothness: it applies for instance to vortex filaments, which are Dirac masses
along curves, or to the contact line between water and the floating structure,
- or to a singular dependence of the solution with respect to a parameter, typically the Reynolds
number (like in boundary layers).
The connection between the two points of view is usually made by viscous regularization of the
non-smooth structure, or conversely by taking the vanishing limit of the parameter.

More generally, the three problems considered in SingFlows involve flows with very small scales. A
relevant description then requires the derivation of reduced models.

Beyond these common mathematical challenges, which are at the core of the project, the problems
studied in SingFlows are intrinsically of an applied nature. They have concrete implications (for
river flows, blood circulation, the wear of floating structures), and any quantitative understanding
requires numerical simulations, as well as a knowledge of realistic settings. This is why the SingFlows
project is based on an integrated team of 25 people with expertise in partial differential equations,
numerical analysis, and in the computation and physics of fluid dynamics. This team has pre-existing
connections, which will make the task implementation easier. This task implementation follows a
careful schedule, with identification of short-, mid- and long-term objectives. It includes efforts
towards the dissemination of our results, both to international specialists and general audience.

Several breakthrough results are expected:
- an improved description of friction laws in shallow water flows.
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- the justification of the binormal flow approximation through a vanishing viscosity limit.
- the development of robust and efficient numerical codes for wave-structure interaction.
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1 Context, positioning and objectives of the project

The project SingFlows aims at a better understanding of three topics in fluid dynamics:

i) The description of anisotropic flows, like boundary layers, shallow water or pipe flows.

ii) The description of vortex dynamics in slightly viscous fluids.

iii) The interaction between water waves and fixed or floating structures.

These topics originate from different contexts, but they have strong connections at the mathematical
level. In all three settings, the flows can be described by Euler or Navier-Stokes type equations, and
the associated solutions exhibit spatial singularities. For instance, the contact line between the water
surface and a floating object is no more than Lipschitz. Vortex filaments in ideal fluids are modeled
by Dirac masses along curves. In the Navier-Stokes evolution, such filaments are instantaneously
regularised at positive times, but they still exhibit a singular dependence in the Reynolds number as
it becomes large, similarly to what happens for boundary layers. From the numerical point of view,
the common difficulty is that these singularities cannot be captured by direct computations, as they
require too many grid points. It is then necessary to derive reduced models, that allow to retain the
main features of the singular region, and/or its effect on the large scale flow.
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The goal of the SingFlows project is to develop innovative mathematical methods, as well as efficient
reduced models and codes, to improve the description of the singular flows involved in i)-ii)-iii).

1.1 Motivations

We first present the main motivations behind the SingFlows project.

Flows with small aspect ratio

Many flows are characterised by a small aspect ratio: their typical transverse scale is much smaller
than their typical tangential scale. A classical example is geophysical flows, like rivers or oceanic
currents. Another example is blood flow: indeed, the depth of veins and arteries varies between 2
mm and 2.5 cm, while their total length in the human body is 90000 km. We can also mention
the boundary layers that develop in high Reynolds number flows near solid boundaries, or, in the
context of oceanography, near coasts or within very long waves such as tsunamis. Understanding
the dynamics of these anisotropic flows is crucial in many concrete issues. Many questions can be
formulated regarding such issues, for example:

• How does an obstacle upstream of the flow influence the discharge downstream? This question
is relevant to the construction of bridges in rivers, but also to airway obstructions in the body, in
connection to sleep apnea.

• How does roughness at a solid surface affect energy dissipation in a fluid flow? This question is
related to the role of bathymetry in rivers, or to the effect of arteries’ stiffness on the blood flow.
Conversely, computing the impact of friction forces on the erosion of solid surfaces is a major issue
in mechanical engineering or geophysics.

To go beyond a simple qualitative description, the numerical simulation of anisotropic flows is nec-
essary. The problem is that a direct simulation of the full Navier-Stokes equations is often too
demanding computationally, especially if the anisotropic flow is coupled to a large scale one. On
the other hand, one may hope to take advantage of the anisotropy through a dimensional analysis,
which leads to rescaled Euler or Navier-Stokes equations with small parameters. These dimensionless
systems open the road to the use of asymptotic expansions, so as to derive reduced models which
are easier to handle numerically. Nevertheless, this idea faces singular perturbation problems: the
terms of highest order in the models (typically the diffusion term in Navier-Stokes equations) often
disappear in the asymptotics. This change of nature of the limit PDE system generates major math-
ematical challenges. First, finding the appropriate form of the asymptotic expansion can be difficult
per se. Indeed, concentrations or oscillations generated by the singularities may create a complicated
dependence on the small parameters. In particular, it is very difficult to go beyond the first term of
the asymptotics, that is to include next order corrections. This difficulty appears for instance when
computing roughness-induced effects on laminar flows [22], or in the classical periodic homogenization
of elliptic systems [4]. This difficulty also arises in the modelling of friction terms, for instance in
shallow water flows: indeed, the viscous terms disappear from leading order asymptotics. Deriving
the appropriate corrective drag term is a major issue, and a major motivation for the SingFlows
project.

Even once an appropriate expansion and some reduced model have been derived, difficulties remain,
and it may happen that the approximate model does not properly describe the fluid dynamics. In
the language of numerical analysis, the approximation can be consistent but not stable. Typically, in
the derivation of simpler equations for anisotropic flows, one usually discards the tangential diffusion,
which is formally negligible compared to the transverse one. This allows for high frequency instabili-
ties, because the reduced equation does not contain (or at least contains less) smoothing mechanisms.
Typical examples of such non-physical instabilities are provided by the Prandtl equation, for which
various ill-posedness or blow-up results are known, see [36, 23] and references therein.
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A natural problem is then to determine among different consistent systems which one to choose:
ideally, it should retain the real instabilities and not suffer from artificial high frequency instabilities.
Again, this very challenging problem is a main motivation for the SingFlows project.

Vortices

In incompressible flows, singularities always occur in connection with high concentration of vorticity.
Tornadoes, for instance, are spectacular examples of columnar vortices, and for obvious reasons it
is of great practical importance to understand how these structures arise, move over long distances,
and eventually disappear. Whirlpools in oceans, or anticyclonic storms in geophysical flows (such as
Jupiter’s Great Red Spot) are other examples of persistent, nearly two-dimensional vortices. Vortex
pairs can be observed in the wake of modern aircrafts, where they are created near the wingtips and
the flaps. Such trailing vortices persist over long time scales, and this imposes severe restrictions on
the frequency of take-offs and landings in busy airports. Vortex sheets occur in abrupt shear flows,
and evolve into complicated structures through the Kelvin-Helmholtz instability. Finally, vortex rings
are very common in turbulent flows, and can be observed for instance during volcanic eruptions, in
physiological flows, or (in dramatic circumstances) around the main rotor of a helicopter. Under-
standing the dynamical behavior of vortices is then a problem of the utmost importance. At the
mathematical level, the following questions arise naturally:

• Do the fundamental equations of fluid mechanics have solutions that describe the various vortical
structures observed in experiments? Are these solutions dynamically stable, hence physically relevant?
If not, under which process are they destabilised?

• How do vortices interact when they come close to one another? This question is linked with
fundamental phenomena in fluid mechanics, such as the vortex merger in two dimensions and the
vortex reconnection in three dimensions.

• How do vortices interact with an impermeable boundary, or with a solid advected by the fluid?
This is also related to crucial practical questions, such as understanding the ground effect that allows
to boost the lift and reduce the drag of airplanes flying near the ground.

With regards to these questions, it is worth pointing out the analogies between vortices and shear
flows. For instance, it is well known that free surfaces in incompressible inviscid layered flows can
be described as vortex sheets which allows to use commun technics for both theoretical [15, 77] and
numerical [7] results. Boundary layers can be also viewed as vortex sheets along a solid boundary
[54], and Kelvin-Helmoltz instabilities develop in the boundary layer near the Earth’s magnetosphere
[76]. In the vanishing viscosity limit, strong vorticity gradients near the core of the vortex prevent
the use of direct numerical simulations. As in the case of boundary layers, asymptotic models are
therefore necessary to understand and compute the dynamics of complex vortical structures. A famous
example is the binormal flow equation, known also as VFE (vortex filament equation) and LIA (local
induction approximation), on which numerics can be easily performed and is used as a standard
model by physicists. It can notably describe the evolution of singular vortex filaments generated
behind delta-wing aircrafts and non-circular jets.

All these analogies lead to mathematical problems which are similar, and can therefore benefit from
common mathematical tools. This is the main rationale behind the SingFlows project.

Wave-structure interactions and marine energy

The sector of marine renewable energies has grown quickly over the recent years, with the promise of
a green and significant energy source. Marine renewable energy encompasses many different technolo-
gies; some of them are already well implemented (off-shore wind turbines for instance), while others
such as wave energy converters (WEC) are more complex and expensive and still require to be more
thoroughly investigated. In this project, we will mainly focus our attention on the modelling, the
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mathematical analysis and the numerical simulation of WEC but many of the expected results will
have an impact on other technologies as well. A primary concern is for instance the wear of WEC
under extreme weather conditions, and this concern is shared by all kinds of offshore structures. This
concrete question requires understanding the behaviour of floating structures in the context of water
waves of high amplitude. This is a significant challenge from the mathematical and modelling point
of view. On top of the water waves dynamics, which is already complex in itself, one needs to un-
derstand the evolution of the immersed part of the floating structure. This is of course a coupled
dynamics: the water waves exert a force on the structure, which through its displacement retro-acts
on the waves. Moreover, in the long term, one should describe a network of converters, therefore with
more intricate coupling.

To the best of our knowledge, the current approach to simulate the dynamics of the converter relies on
computationally expensive CFD simulations or softwares such as WAMIT, which are based on a linear
theory, and limited to time harmonic forcing by the swell. This approach prevents from describing
transient regimes and nonlinear effects, and does not allow to reproduce the dynamics of the contact
line between the water surface and the solid structure. Going beyond this linear approach, obtaining
a realistic model and encoding it are essential motivations for the SingFlows project. This generates
difficulties that are similar to those encountered with anisotropic flows: the direct simulation of free
surface Euler or Navier-Stokes equations is too heavy and the linear models are too simple. The
challenge is to derive simpler sets of partial differential equations that are able to follow the evolution
of the contact line and to take into account the other nonlinear effects. We shall meet here the same
issue as for the first topic of SingFlows (flows with small aspect ratio): the choice between several
possible models is difficult and must be based on modelling, and on mathematical and numerical
considerations. Note that the justification of such derivations and the analysis of these new models
raise very subtle and exciting questions in mathematical analysis: dynamics of the contact line, low
regularity solutions, ”turbulent closure” in reduced models, small viscosity effects, etc. Connections
to other aspects of wave-structure interactions will also be established. The wave maker problem, for
instance, will be particularly investigated.

1.2 Main objectives, originality and relevance in relation to the state of the art

The ambition of the SingFlows project is threefold:

1. To develop new mathematical methods for fluid models at low regularity.
Flows in boundary layers or near vortices become very singular at high Reynolds numbers. Stan-

dard mathematical methods for proving existence and uniqueness of low regularity solutions are often
inapplicable in these situations, because they are based on Fourier analysis and do not take into ac-
count the geometrical nature of the singularity: sheets in the case of boundary layers, lines in the case
of vortices. One must develop blow-up techniques that allow for a precise analysis of the singularity
profile, and give information on its dynamical stability. In the study of boundary layers, this idea
has been implemented through the use of fast/slow variables, which goes back to the pioneering work
of Prandtl. Similar ideas were introduced to analyse vortices and filaments [14], but turning this
into rigorous mathematics is a difficult open problem. Recently, the use of refined doubling-variable
methods (semiclassical analysis, wavelets) has allowed for the analysis of inhomogeneneous problems
in oceanography [17]. Also, self-similar variables were successfully used to study two-dimensional
vortices and axisymmetric vortex rings [35, 31, 34]. One ambition of the project is to further develop
such techniques, and notably to apply them in situations involving vortices interacting with rigid
boundaries (a case for which no mathematical result is available so far). In more complicated situ-
ations where rigorous treatment of the primitive equations is out of reach, we shall analyze reduced
models. Besides the binormal flow, we have in mind the system proposed in [78] and [55] to describe
the interaction of nearly parallel vortex filaments. Studying singularities in such models is also a
challenging objective, for which we will benefit from the innovative techniques set up in [10, 8, 34].

Contact lines for floating structures are another example of mathematical singularity. Contact
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lines also appear in the so-called shoreline problem, where the water depth vanishes. For the simplest
reduced model (nonlinear shallow water), their analysis causes the same difficulties as vacuum in
compressible Euler equations [48, 20]. But for more precise models including dispersion, the problem
is harder and has been solved only in the 1D case [61]. For the full equations, another issue, considered
in [25, 70] is the singularity of the fluid domain. These works are good starting points, but the contact
line associated to a floating structure is far more complex: contrary to the shoreline, its evolution is
not governed by a kinematic equation but by a much more singular PDE.

2. To obtain effective reduced models for singular flows.
In the context of anisotropic flows, we will use a two-step strategy. First, we will focus on boundary

layer flows. Taking advantage of the recent mathematical impetus around the Prandtl equations
[3, 39, 23], we will study the stability of other boundary layer models, coming from interactive boundary
layer theory (IBL, see for instance [19]). These models are consistent with Prandtl, but behave better
in the numerics [57]. Once the best models have been identified, we will in a second step incorporate
them in the treatment of shallow water or pipe flows. The objective is to rely on these models to
describe the interaction with the solid surface, so as to derive efficient closure relations, and in this
way a good parametrisation of the friction. Our approach here is inspired by some very recent work
of James, Lagrée, Le and Legrand on a modified shallow water model. See [47] for a preliminary
version.

In the context of wave-structure interaction, we will follow a novel approach initiated by David
Lannes in [59], where the interaction is described by a flow with partial pressure: the pressure ex-
erted by the flow on the solid is understood as a Lagrange multiplier associated to the constraint
exerted by the solid on the fluid surface. Note that this model is reminiscent of mixed compress-
ible/incompressible models, in which other team members have expertise. Another aspect of our
work will be to take into account several physical effects neglected in [59] such as viscosity or vor-
ticity. Our hope is that these models will be both simple and accurate enough to simulate realistic
configurations (for instance an array of WEC in a complex wave field) that are out of reach for direct
CFD computations.

3. To develop efficient numerical codes based on these reduced models.
Reduced models can be extremely powerful, because part of the physical difficulties of the full

problem have been handled analytically. It is however important to appreciate that even once their
well-posedness has been established, their numerical implementation is usually not straightforward,
often because regularising terms do not act on all directions. Great care must be taken in choosing the
numerical scheme and building the resolution algorithm, in order to guarantee numerical stability.
Our group includes numericists and physicists, who have over the years developed experience on
this sort of numerically challenging computations. For instance, part of the team has already a
strong experience in the simulation of water waves propagation, which will enable a rapid focus on
the interaction with the floating structure. We expect our codes to go beyond theoretical interest,
and reach industrial partners. At a more global level, we expect our project to spread to a larger
community, especially to many young researchers and non-specialists.

2 Project organisation and means implemented

2.1 Scientific programme

We detail here the concrete tasks that we plan in order to reach the general objectives presented in
section 1. We will provide a tentative schedule in the next paragraph.

Task 1. Beyond Prandtl : stability of interactive boundary layer models.

The boundary layer phenomenon is ubiquituous in flows at high Reynolds number (Re � 1). The
classical Prandtl model, set up by Prandtl in 1904, was a breakthrough in our understanding of the
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boundary layer properties, but is not sufficient at least for two reasons. First, the unsteady Prandtl
equation does not reproduce properly the growing modes of the Navier-Stokes equation, namely the
Tollmien-Schlichting waves. Moreover, both in the unsteady and steady settings, the Prandtl solution
blows up after separation. To overcome these issues, refined formal asymptotic expansions were
proposed, that go under the name of triple deck models, or interactive boundary layer models (IBL).
The general idea behind these models is to retain some O(Re−1/2) terms that are usually neglected
in the Prandtl derivation. One gets in this way models that are consistent with the classical one, but
which (at least in the steady regime) are more robust numerically. These reduced models have been
extensively used in the 1980’s and 1990’s in aerodynamics, and have turned useful recently in other
contexts [27]. Still, to the best of our knowledge, almost nothing is known from a theoretical point of
view.

One task of the SingFlows project is to study mathematically the stability of these models. We would
like to recover - at least for some of them - the observed fact that they are more stable than the
Prandtl equation. Problems are to be considered gradually: from models with fixed displacement
thickness to complete IBL models, from the analysis of simple linearizations to the local and then
global well-posedness theory of the nonlinear equations. Such study was initiated recently in the
unsteady regime in [21], but much remains to be done. We notably plan to focus on steady problems,
for which most simulations were performed. We will first consider flows with no recirculation, and
determine if the usual Crocco and Von Mises tranforms still allow for uniform bounds. We will then
allow for recirculation. The point will be to check if the blow-up mechanism established in [23] for
the classical Prandtl system is inhibited in the IBL context.

If the previous mathematical studies fail to exhibit good stability properties of the IBL models, they
should help to understand the instability mechanism, and allow to add some appropriate stabilizing
terms. Our objective is to identify at the end of this task some robust reduced boundary layer model.
Such models can then be used in a more global system, as we will explain in the next paragraph.

Note that time permitting, Task 1 can be further extended. For instance, the methods that we will
develop should apply to the so-called RNSP model, used recently in the modelling of thin pipe flows
[58]. This model is a viscous version of the inviscid hydrostatic equations, which are known to be
well-posed under concavity conditions on the velocity. It would be interesting to see if well-posedness
is preserved with the addition of transverse diffusion.

Task 2. Improvement of friction modelling in anisotropic flows

A standard approach to 2D flows with small aspect ratio is as follows: i) one neglects the tangential
diffusion in the evolution of the tangential velocity u, ii) one replaces the equation for the transverse
velocity v by the so-called hydrostatic approximation, iii) one integrates the momentum equation for

u over the water height h. This integrated equation involves the average velocity h−1
∫ h
0 u, but is

not closed. A major issue is to determine closure relations for the integrated convection term and
integrated diffusion term, this last term being the tangential shear stress at the boundary. In the case
of shallow water flows, the ideal Saint-Venant model assumes that the velocity is constant along the
water height, and omits the tangential shear stress. On the contrary, a viscous Saint-Venant model
can be obtained by imposing a parabolic (half-Poiseuille) profile for the velocity as the closure law
[12]. Still, in most situations, these closure laws are far from accurate: they do not reflect the fact that
the effect of the viscosity is localised in a boundary layer at the bottom, and that this effect is very
sensitive to small bathymetry variations (typically a small bump). The usual solution is to add to
the ideal Saint-Venant model an ad hoc friction term. This term is based on empirical considerations
(Chezy’s law, Manning’s law), or on idealised Prandtl boundary layer theory [64]. A similar difficulty
arises in pipe flows.

A main task of the SingFlows project will be to use interactive boundary layer models to improve the
description of friction in anisotropic flows:
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• We will start from a recent work of James, Lagrée, Le and Legrand, where an original enriched
shallow water-system is proposed (cf [47] for preliminary results). It is based on a coupling between
the ideal shallow water model and a Von-Karman equation, which is an integrated version of the
Prandtl boundary layer equation. Closure laws are derived here by imposing polynomial profiles in
the boundary layer. Although preliminary numerical tests are encouraging, much remains to be done
on the relevance of this model (domain of hyperbolicity of the linearised model around constants,
nonlinear well-posedness). Meanwhile, we will investigate its physical relevance by testing various
choices of polynomial profiles and bathymetries.

• In a second step, we will try to replace the Prandtl equation by an interactive boundary layer model.
The analysis performed in Task 1 will be crucial here to select the relevant system.

• Once an enriched shallow water model has been derived, the next step is to identify some possible
law for friction in terms of the water height, bottom topography and average velocity. This goal can
be pursued by analytical means or - more likely - through numerics. A breakthrough result would be
to recover in this way some empirical formula from the literature (typically Chézy or Manning laws).

Task 3. Description of vortex interaction in slightly viscous fluids

We will provide qualitative information on the deformation and interaction of vortices in Navier-Stokes
flows. We shall proceed gradually.

• Single vortex filament. Isolated vortices in R2 or filaments in R3 already have a non-trivial evolution
under the Navier-Stokes dynamics. In two dimensions, the dissipation mechanism is well-understood
[35, 32], and detailed stability results for Lamb-Oseen vortices are now available. We will therefore
focus on the three-dimensional case, and will rely on the recent advances of Gallay and Sverak in [34],
who have proved global well-posedness of the axisymmetric Navier-Stokes equation (without swirl)
starting from a circular vortex filament. We believe that the techniques introduced in [34] are robust
enough to handle more general configurations. Our intention is to start with perturbative settings,
such as nearly rectilinear filaments or small perturbations of circular filaments [44]. Another objective,
in the axisymmetric setting, is to show that the short-time asymptotic result of [34] remains valid
over a fixed time interval [0, T ] in vanishing viscosity limit. This would provide the first rigorous
justification of the binormal flow for viscous vortex rings.

• Interaction of several vortex filaments. When several point vortices are present in a planar viscous
fluid, each vortex generates a non-uniform velocity field which destroys the circular symmetry of the
other vortices and creates nonlinear interaction. The stability analysis conducted in [31] shows that
the vortices are slightly deformed, so that the self-interaction exactly counterbalances the strain of
the velocity field. A mid-term project is to extend this result to axisymmetric flows arising from
circular vortex filaments, by combining techniques developed in [30, 31, 34]. This will in particular
provide a rigorous justification of the leapfrogging phenomenon in slightly viscous fluids. Note that
such a justification was recently obtained by Jerrard and Smets [53] for quantum fluids governed by
the Gross-Pitaevskii equation, but the corresponding problem is open for both the Euler and the
Navier-Stokes equations.

• Interaction with material boundaries. This interaction was extensively studied in physics, notably
through experiments, but we are not aware of any mathematical result even in dimension two. In
order to get a better understanding of possible interactions, we will first investigate the idealised but
paradigmatic case of a point vortex moving in a half-plane. For an ideal fluid, the “method of image
charges” gives an explicit formula for the velocity field, which predicts a uniform translation of the
point vortex in the direction parallel to the boundary. However, viscous fluids are expected to behave
in a completely different way, due to the interaction of the point vortex with the boundary layer. For
instance, trailing vortices created by airplanes are observed to undergo a rebound on the ground, a
phenomenon usually referred to as the “ground effect”. Our aim is to shed some light on this effect,
through a mathematical analysis involving the construction of an explicit correction, of boundary
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layer type, to the inviscid velocity profile. This is an instance where collaboration between experts in
boundary layer theory and vortex dynamics will be fruitful.

• Interaction with shear. The interaction of a vortex with a shear is extremely intricate. It can
notably result in a weakening of the vortex, like in the case of the Earth atmosphere, in which
tropical cyclones are significantly weaker in the presence of an ambient atmospheric shear. We want
to develop a numerical scheme to investigate the stability of a vortex line subject to a transverse
shear. Our goal is to obtain a bifurcation diagram for the vortex strength in terms of the temperature
and the shear.

Task 4. Singularity formation on vortex structures via reduced models

Proving the stability of singular structures such as vortex filaments in inviscid 3D fluids seems for the
time being out of reach without stringent assumptions [51]. The slightly viscous case is the core of
Task 3. To improve on the description of vortex dynamics, we shall rather consider here asymptotic
models or restrict ourselves to special classes of solutions: self-interaction of one filament through the
binormal flow approximation and interaction of several vortices (points or filaments).

• Vortex filaments with corners. In a recent series of papers (see [10] and references therein), Banica
and Vega have provided an accurate description of the evolution of one single corner in a vortex fila-
ment evolving according to the binormal flow equation. Now that this mechanism is well-understood,
we wish to tackle the case of filaments that are initially concentrated on a polygon. A chaotic dy-
namics, involving rotation of the axis and resurgence of symmetry, is observed experimentally (for
instance in non-circular wake jets) and in numerical calculations [43, 52]. It was proved in [24] that
the filament should be a skew polygon at rational times. Inspired by the paper [46], we plan to show
that the evolution of each corner in the initial polygon captures some characteristic features of turbu-
lence theory, such as multifractality via the Frisch-Parisi conjecture. We also aim at understanding
what the evolution should be for irrational times, and eventually prove that the constructed curve
evolution is a weak binormal flow solution in the sense of [52].

• Interaction between several vortices. Significant progress was made recently [9, 8] about the classical
model for almost parallel vortex filaments due to Zakharov [78] and Klein et al [55]. Nevertheless,
this model has limitations. It would be of interest to take into account the self-induced effect of each
filament during the reconnection process. Another important topic in spray models is the modified
point vortex system derived in [41], in which the vortex centers are accelerated by a Kutta-Jukowski
lift force. For instance we aim at proving that, generically, the vortices do not collide in finite time
(see [66, Chap. 4.2] for the classical point vortex system).

Task 5. Wave-structure interactions

One of the main novelties when one adds a floating structure at the surface of a fluid - otherwise
governed by the water waves equations - is that a new free boundary problem arises, namely, the
evolution of the contact line between the water, the solid and the air. We shall investigate first the
case where the solid is in forced motion – the more complex case of freely floating objects will be
investigated afterwards.

• Theoretical analysis of the contact line. The position x(t) of the contact line is defined implicitly by
the relation h(t, x(t)) = hw(t, x(t)), where h is the water height and hw is the distance from the wetted
surface of the solid to the bottom - in the case of forced motion, this function is known. The main
difference with the shoreline problem [48, 20, 61] is that the boundary condition at the contact line is
not kinematic anymore, so that for instance Lagrangian methods do not seem applicable. In addition
to the contact line itself, it is necessary to address the well-posedness of the fluid equations in the
inner (under the solid) and outer regions. We will rely on the coupled compressible-incompressible
formulation introduced in [59], see paragraph 1.2. This is an entirely new problem, involving a new
kind of free boundary (more singular for instance than the one related to the stability of shocks).
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We shall consider it by addressing situations of increasing complexity: 1D before 2D, nondispersive
models like NSW before weakly nonlinear models like Boussinesq, and finally the full water waves
equations. In the latter configuration, it will be necessary to analyse the potential equation in the
fluid domain which has a corner (or an edge) at the contact line; good starting points for the analysis
will be [70, 25]. Our study should also benefit from recent advances in the study of congested flows
- see Task 6 - or from recent progresses in the analysis of mixed initial-boundary value problems for
dispersive equations [5, 6]. In return, the results that we will obtain will hopefully apply to a larger
class of models.

• Full fluid-structure interaction. After a good understanding of the contact line, we plan to compute
the retroaction of the fluid on the floating structure. This means that we need to include in Newton’s
law the hydrodynamic force exerted on the solid. This amounts to computing the pressure at the
solid surface. A key step to avoid numerical instabilities and to allow well-posedness is to exhibit the
added-mass effect in this pressure contribution [16, 41]. A main point will be to handle this added
mass effect in models of increasing complexity.

• Viscous regularization. Besides the treatment of the inviscid model above, which is very challenging,
another natural approach is the analysis of a viscous version. There exists indeed a now classical
theory for the free boundary Navier-Stokes equations, cf [75] and references therein. We think that
we should be able to generalize these techniques in the presence of a second free boundary (the contact
line) based on our expertise in fluid-structure interactions for totally immersed solids [28, 41, 67] and
elastic membranes [42]. A further step forward would be the understanding of the vanishing viscosity
limit: article [68] could be helpful in that. Furthermore, the study of associated boundary layers and
friction effects could draw a connection to Tasks 1 and 2.

• Numerical study of wave-structure interactions. The first difficulty is to have a good description of
the evolution of the contact line. As a Lagrangian description is ill-suited for this, we shall rather
treat it by means of an embedded boundary method for which the contact line is implicitly repre-
sented on an unfitted mesh by means of a level set method for instance. The key element here (e.g.
[71]) is to construct a conservative coupling between the different flow regions. We shall also devise
sufficiently accurate and stable ODE techniques to evolve in time the parametrization of the contact
line, consistent with the nontrivial dynamics studied theretically in the previous point.
For the fluid-structure interaction itself, there are mainly three aspects. The first involves the charac-
terization of the non-linear wave hydrodynamics on non-moving structures. For this, we will rely on
existing efficient schemes designed by some team members. They are based on adaptive unstructured
grids for fully nonlinear and weakly dispersive wave models [60, 29].
The second aspect is the coupling between these outer wave models and the inner flow equations
delimited by the contact line. The equations are incompressible in this inner region, and an elliptic
problem must be solved for the pressure on the body. A rather classical variational approximation of
this problem will be considered with Dirichlet boundary conditions obtained from a continuous finite
element extrapolation within the cells containing the contact line [63].
A third aspect arises for freely floating objects. In this case, several developments are possible. These
involve first of all the choice of the time stepping strategy (implicit, partitioned or explicit), the use
of explicit time stepping techniques explicitly accounting for added mass effects in the discrete ODEs
for the body. Initial studies will be performed on two-dimensional configurations with heave motion,
before passing to three-dimensional geometries, and to horizontal movements. This task overlaps with
some of the activities under way in the European project MIDWEST aiming at proposing a hierarchy
of modelling tools for floating bodies. Our interaction with the consortium of MIDWEST, and with
some SMEs in the domain of wave energy (e.g. TECNALIA) will provide us with guidelines to study
configurations relevant in real applications (see Technological transfer in §2.4). Discussions with the
team of Roberto Camassa (Chapell Hill) are also underway in order to set up experiments in a wave
tank, that would serve as benchmarks for the computations.
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Task 6. Connection to related models

We want here to draw parallels to related problems of high interest. These problems share features
with those evoked in Task 5, but rely on different mathematical tools (control theory, compactness
methods). We expect that conducting Tasks 5 and 6 in an interactive manner will be a source of
innovative ideas.

• The wave-maker problem: wave generation. We want to address the question of the generation
of water waves in a numerical or experimental wave tank. This corresponds to the mathematical
problem of the controllability of the water-wave equations. Recently, a local exact controllability
result was obtained for free surface Euler equations with surface tension [2]. It proves that one can
generate arbitrary small amplitude periodic water waves by blowing on a localized portion of the free
surface of a liquid. We plan to extend this result to experimental configurations where water waves
are produced either by the immersion of a solid body (called plunger), or by the oscillation of a solid
portion of the boundary. In order to treat these situations, we will combine the recent estimates for
bounded domains derived in [25] and the boundary observability inequalities due to Alazard [1].

• The wave-maker problem: artificial boundary conditions and wave absorption. Laboratory exper-
iments of water waves face the difficulty of wave reflection against the boundaries of the basin. A
similar problem appears in simulations, since for obvious computational reasons one has to work in
a bounded domain. Our goal here is to bring some mathematical insight to this issue. We will con-
sider the two classical approaches to the numerical treatment of unbounded domains. The first one
consists in truncating the domain by the set up of an artificial boundary. This is a good strategy
if one can find some special non-reflecting boundary conditions which make the artificial boundary
invisible to outgoing waves. Such artificial boundary conditions have been studied recently in [50, 49]
in the case of linear water waves, and we wish to extend their analysis to the nonlinear setting: we
will rely on the nonlinear microlocal analysis of the water-wave equations performed in [2]. A second
method consists in damping outgoing waves in an absorbing zone surrounding the artificial boundary.
This is a numerical analogue to natural mechanisms, such as energy dissipation created by a beach
with a mild slope. Mathematically, this corresponds to the stabilization of the water-wave equations.
Our goal here is to work on the models and methods developed by the oceanographers from Ecole
Centrale de Nantes to simulate numerically experimental absorbers. In particular we want to study
the wave-structure problem where water waves interact with a porous medium.

• Connection to congested flow models. The mixed compressible/incompressible model from [59] is
reminiscent of the so-called hard models used in the simulation of congested flows [69, 73] . These
models come from a hydrodynamical modelling of very diverse phenomena, like traffic jams, blood
circulation, crowd motion, etc. (see for instance [26, 69, 72, 74]). They oppose to the soft models,
which are typically compressible equations in which congestion is described by singular pressure laws.
The transition from soft to hard models is made formally by adding a small parameter in front of
such singular pressure term and sending this parameter to zero [13]. The analogy with the models
introduced in [59] can prove very useful for the analysis of situations where the wetted surface of the
solid changes connexity. Conversely, we expect that improving our understanding of the dynamics of
floating structures will benefit to more general hard models with time and space dependent packing
constraints. Time permitting, we shall also try to include the effect of viscosity, that may generate
new phenomenology such as memory effects [72, 73, 62].

2.2 Actions

Task implementation

The tasks described in the previous paragraph will correspond to different periods of the project, and
different duration, depending on their exploratory nature.

Task 1 (stability analysis of IBL models) should be realised over the first two years of the project. We
believe that this short term objective is reasonable: strong progress was made recently in the analysis
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of classical boundary layer problems, and our task force has already much expertise and interaction
on these questions.

Task 2 (improving the modelling of friction) requires that the accomplishment of Task 1 is advanced.
Therefore, it will start in year 2 of the project, and end in year 4. More precisely, the analysis and
simulation of the enriched shallow water model of [47] will be considered in year 2, the derivation of
new models including IBL will be considered in year 3, while extensive numerical computations to
infer friction laws would be the objective of the last year.

Task 3 (vortex dynamics in viscous fluids) is decomposed in several stages. In the first two years
of the project, we plan to understand the dynamics of a single axisymmetric vortex filament in the
vanishing viscosity limit (t fixed, ν → 0), and to justify the binormal flow in this context. In a
second stage, our goal is to use that result to describe interactions of circular filaments, leading
to the leapfrogging phenomenon. In parallel, we want to investigate the evolution of more general
structures in perturbative settings, including nearly rectilinear or nearly circular filaments. As for the
interaction of a vortex with a wall, a first step - to be initiated at the kick-off conference - is to identify
a good functional setting and to build an appropriate model for the boundary layer. Understanding
the motion of the point vortex in a slightly viscous regime will be done in a second stage, taking
advantage of the fact that various team members are experts in vortex stability and/or boundary
layer theory. Another interesting question is the long time behaviour of the solutions in this context,
which could be studied following earlier results in [33, 45].

Task 4 (vortex dynamics in reduced models) includes two mid-terms objectives. We hope to enlighten
within two years the complex algebraic structure which governs the evolution in time of a polygonal
curve through the binormal flow, and which generates the fractal dynamics detected in the numerics.
In parallel, we shall study the occurence of collisions in the extended point vortex system derived in
[41], and hopefully prove that no collisions occur for almost all initial data. We emphasize here that
several team members are experts in collision problems, see [9, 56, 38]. Deriving and studying more
accurate models for the interactions of almost parallel filaments is an ambitious problem, which we
plan to address in a second stage, during years 3 and 4 of the project.

Task 5 (dynamics of floating structures) will be considered gradually. During the first two years of the
project, we expect to tackle the contact line problem for (NSW) and (SGN), in horizontal dimension
d = 1. We shall then investigate the case d = 2 and/or the full water waves equations. The numerical
study will follow the same rythm: in the case d = 2 the case of purely vertical motion (heave) will be
considered first. The treatment of the full viscous model should be tractable within the first half of
the project, in parallel to the analysis of the contact line. In the inviscid case, understanding the solid
dynamics will of course depend on the progress realised on the contact line problem. Nevertheless,
we will be able to work independently on this topic by considering solids with vertical walls, since the
dynamics of the contact line is trivial in this case.

Our analysis of the wave-maker problem, which is a central objective of Task 6 will first focus on
the design of adapted artificial boundary conditions. Accurate wave-maker models will be considered
afterwards. The study of congested phenomena will be more transversal, and carried during the whole
duration of the project. Regular meetings will be organised between the members involved in tasks 5
and 6 to favour the transfer of methodologies between the tasks.

Dissemination of the results

Obviously, SingFlows is not conceived as a self-sufficient project. We will be careful to have strong
connections within the scientific community, but also with potential industrial partners, and with
non-specialists.

Scientific communication. To ensure a link with the international experts on the same topics, we
plan to invite foreign researchers throughout the duration of the project: we have in mind that each
partner should invite 1 to 2 foreign researchers per year, for two-weeks stays. We also plan to propose
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a mini-symposium at the international conference Equadiff 2019. Furthermore, we will organize two
conferences and a summer school, reflecting the three main themes of the project (anisotropic flows,
vortex flows, wave-structure interaction). These three events will mix research talks and lectures to
make them attractive to PhD students and postdocs. Moreover, we plan to reach an audience of non-
specialists, either through publications in popular science journals - some of the team members have
already contributed to magazines such as Pour la Science, or La Recherche - or through popular science
conferences (like the Maths Club of University Paris Diderot or the Semaine des Mathématiques for
high school students).

Technological transfer. One ambition of the SingFlows project is to be of an applied nature, and
our activities around the theme of wave-structure interactions are very promising in this respect.
These activities benefit from the interaction with european specialists in the domain of wave en-
ergy conversion, via a collaboration with the consortium of the MIDWEST OceanERANET project
(https://project.inria.fr/midwest/), coordinated by M. Ricchiuto. Moreover, D. Lannes and M.
Ricchiuto have initiated another collaboration with the technology transfer agency Tecnalia, in order
to identify the problems that are most relevant for practical applications. All these interactions will
allow us to compare the models we will develop in the panorama of existing industrial and commercial
tools, and to benchmark them against these products. A first round table discussion on these issues
will take place during the international workshop HYWEC, co-organised with BCAM, and with the
MIDWEST consortium (http://www.bcamath.org/en/workshops/hywec2017).

3 Impacts and benefits of the project

3.1 Theory

Obviously, most of the objectives of the SingFlows project aim at a theoretical impact, notably
towards partial differential equations. We think that the mathematical tools that we will develop for
localized structures, such as vortex filaments or boundary layers, will overall benefit to mathematical
fluid dynamics: for many years, the dominant trend to tackle fluid mechanics problems has relied on
Fourier analysis, and there is a need for more spatially inhomogeneous methods. In the same spirit,
the improvement that the project will bring to the treatment of wave-structure interaction will benefit
to the general theory of mixed problems for nonlinear dispersive equations.

Specifically, we expect the following mathematical results in the mid/long term:

• Accomplishing Task 1, we will be able to give a rigorous justification to the use of interactive
boundary layer and triple deck theories. In this way, we will bridge a gap between the mathematical
community and the mechanics/engineering community where these theories have been used success-
fully - without much justification.

•Accomplishing Task 2, we will obtain an improved modelling of friction in shallow water or pipe flows,
starting from the Navier-Stokes equations. This will provide a significant improvement compared to
most derivations (see [40, 65]), where the friction terms are given a priori, mostly through empirical
laws. A very stimulating perspective, probably more in the long term, is to be able to derive a simple
dimensional friction law, involving the water height and the mean velocity. This law will then be
included in the usual Saint-Venant system. A breakthrough would be to recover in this way the usual
Chézy’s or Manning’s empirical laws.

• As regards the dynamics of vortices, we expect significant progress in at least two directions:
towards a rigorous justification of the binormal flow, and towards a mathematical description of the
interactions between vortices and material walls. The first one is a fundamental open problem in
fluid mechanics, and the second one is closely related to very important practical questions, such as
understanding the origin of the ground effect in aerodynamics. Solving these problems will require a
better understanding of the dynamics of the Navier-Stokes equations in a non-perturbative regime,
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and we certainly expect that the techniques developed here will be useful to attack other problems in
the future. On the other hand, deriving more realistic models for the interaction of two-dimensional
vortices or three-dimensional filaments is a modelling issue of the utmost importance, which may shed
a new light on extremely difficult open questions in vortex dynamics: the merger of planar vortices,
or the reconnection of vortex tubes.

• Concerning the mathematical analysis of wave-structure model, the long term hope is a full mathe-
matical understanding of the system introduced in [59]. In our efforts towards this goal, we will have
to solve open problems of independent interest on compressible-incompressible models - that arise in
other situations involving congested flows such as granular media, traffic jams, social hydrodynamics
- and on mixed initial-boundary value problems for dispersive perturbations of hyperbolic systems -
very important for many applications in hydrodynamics.

3.2 Applications

The SingFlows project is centered on topics of practical importance. It offers an integrated approach
that mixes qualitative mathematical analysis, numerical schemes and computations. For these reasons,
applications of the theoretical results are highly expected:

• Indeed, improving the calculation of wall shear stress in anisotropic flows should be helpful in
various areas, notably in the study of erosion processes, drag computation, or in the study of the
blood circulatory system. For instance, in arteries, elevated wall shear-stress due to stenoses may
initiate the mechanism of thrombo-embolism. The gain of computational time by using reduced
models is significant and may be useful if rapid diagnosis is needed [58, 18]. A tractable but accurate
parametrisation of friction is also crucial to many domains, for instance in atmospheric sciences to
describe vortex streets in the lee of large isolated islands. We are optimistic that the codes to be
developed during Task 2 will be a remarkable improvement to the existing simulations.

• The interaction of an isolated vortex with an ambient shear will find applications in the context of
tropical cyclones, which are huge atmospheric vortices, driven by moist convection and impeded by
an ambient atmospheric shear. The effect of the shear on a tropical cyclone strength is very poorly
understood. We expect our codes to improve the prediction of this strength through the computation
of a bifurcation diagram in terms of the control parameters (temperature, shear strength).

• Our project should also lead to significant advances in the simulation of floating structures. Firstly,
our approach allows one to find the pressure exerted on the solid by solving an elliptic equation in d
dimensional bounded domain (d is the horizontal dimension) while the standard approaches require
the resolution of the d+ 1 dimensional potential equation in an unbounded domain (the direct CFD
approaches being even more computationally demanding). The gain in computational time should
allow us to provide numerical computations for complex configurations such as arrays of wave energy
convertors in complex and large amplitude wave fields. Moreover, the equations used by engineers
for the motion of the floating structure are based on an oversimplified analysis, and we will propose
significant corrections. This is a great gain compared to the usual three-dimensional modellings of the
same problem. This is obviously very appealing from a numerical point of view. We clearly expect
that, by the end of the SingFlows project, the design of a numerical code based on this system will be
achieved. For these aspects, we will be in direct contacts with some of the most significant actors in
wave energy engineering through the network Midwest led by M. Ricchiuto and our contacts with the
technological agency Tecnalia (see paragraph 2.2). We are confident that in the long run our work
will have an impact for engineers.
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[70] M. Ming, C. Wang. Elliptic estimates for Dirichlet-Neumann operator on a corner domain. arXiv, 2015.

[71] L. Monasse, V. Daru, C. Mariotti, S. Piperno, C. Tenaud. A conservative coupling algorithm between a compressible
flow and a rigid body using an embedded boundary method. J. Comp. Phys., 231(7):2977–2994, 2012.

[72] C. Perrin. Pressure-dependent viscosity model for granular media obtained from compressible Navier-Stokes equa-
tions. Applied Mathematics Research eXpress, 2016.

[73] C. Perrin, M. Westdickenberg. One-dimensional granular system with memory effects. arXiv, 2017.

[74] B. Perthame, N. Vauchelet. Incompressible limit of a mechanical model of tumour growth with viscosity. Phil.
Trans. R. Soc. A, 373(2050):20140283, 2015.

[75] Y. Shibata. On some free boundary problem of the navier–stokes equations in the maximal – regularity class.
Journal of Differential Equations, 258(12):4127 – 4155, 2015.

[76] A. Walker. The Kelvin-Helmholtz instability in the low-latitude boundary layer. Planetary and Space Science,
29(10):1119 – 1133, 1981.

[77] S. Wu. Almost global wellposedness of the 2-D full water wave problem. Invent. Math., 177(1):45–135, 2009.

[78] V. Zakharov. Wave collapse. Usp. Fiz. Nauk., 155:529–533, 1988.

17


	Context, positioning and objectives of the project
	Motivations
	Main objectives, originality and relevance in relation to the state of the art

	Project organisation and means implemented
	Scientific programme
	Actions

	Impacts and benefits of the project
	Theory
	Applications


